Begriffe der Cytogenetik

Das Chromatid, -en

besteht aus einem linearen DNA-Molekül (Doppelhelix), das zumindest teilweise auf Proteinspulen (das Histon, -e*) aufgewickelt ist.

Das Chromosom, -en

- kann aus einem einzigen Chromatid bestehen: 1-chromatidiges Chromosom
- kann aus zwei völlig identischen Chromatiden (den Schwesterchromatiden) bestehen, die von einer Proteinklammer (das Centromer, -e) zusammengehalten werden: 2-chromatidiges Chromosom

Bei der **Replikation** entsteht aus einem 1- ein 2-chromatidiges Chromosom. Weil die Schwesterchromatiden identisch sind, ist es für den reinen Informationsgehalt eines Chromosoms unerheblich, ob es aus einem oder aus zwei Chromatiden besteht.

Das Karyogramm

ist eine nach Größe geordnete fotographische Darstellung aller Chromosomen einer Zelle im maximal aufgewickelten (kondensierten) Zustand.

Der Chromosomensatz

umfasst von jeder Chromosomensorte 1 Exemplar. Beim Menschen umfasst ein Chromosomensatz 22 Autosomen und 1 Gonosom, insgesamt also 23 Chromosomen (n=23). Als **Gonosomen** (das Gonosom, -en) bezeichnet man die Chromosomen X und Y, die das Geschlecht bestimmen. Alle anderen Chromosomen nennt man **Autosomen**.

Kommt in einer Zelle nur ein einziger Chromosomensatz vor, dann nennt man diese Zelle **haploid** (dabei ist es unerheblich, ob die Chromosomen dabei aus 1 oder aus 2 Chromatiden bestehen); dies ist z. B. bei Geschlechtszellen (Spermien- und Eizellen) der Fall. Die Körperzellen der meisten Vielzeller besitzen zwei Chromosomensätze, sie sind **diploid**. Der Chromosomenbestand einer diploiden menschlichen Zelle ist: 44 + XY bzw. 44 + XX.

In diploiden Zellen kommen also von jeder Chromosomensorte 2 Exemplare vor, die man **homologe Chromosomen** (= das Homologe, -n) nennt. Bei den Autosomen sehen diese beiden Exemplare im mikroskopischen Bild bezüglich der Länge, der Lage des Centromers und des Bandenmusters völlig gleich aus. (X- und Y-Chromosom bilden kein Homologenpaar).

Homologe Chromosomen besitzen jeweils an der gleichen Stelle Information über das selbe Thema (z. B. Hauptblutgruppe auf dem langen Arm von Chromosom 9*), aber die konkrete Information darüber kann unterschiedlich sein (z. B. A oder B oder 0). Man sagt: Bei beiden Chromosomen liegt an der gleichen Stelle das gleiche **Gen** (z. B. das Gen für die Hauptblutgruppe). Viele Gene existieren in zwei oder mehr Varianten; so eine Variante nennt man das **Allel** (z. B. das Allel A, das Allel B bzw. das Allel 0). Dazu gibt es eine Analogie in der Informatik: Das Gen entspricht dem <u>Attribut</u>, das Allel entspricht dem <u>Attributwert</u>.

Bei der Zellteilung (Mitose) werden die Schwesterchromatiden voneinander getrennt. Dadurch entstehen jeweils aus 1 2-chromatidigen Chromosom 2 1-chromatidige Chromosomen.

*) kein Lernstoff!

Nickl, Dezember 2019